Convergence to common fixed points for generalized asymptotically quasi-nonexpansive mappings

نویسندگان

  • G. S. Saluja
  • G. S. SALUJA
چکیده

The aim of this article is to establish some strong convergence theorems of three-step iteration process with errors for approximating common fixed point for generalized asymptotically quasi-nonexpansive mappings and also establish a weak convergence theorem by using Opial’s [11] condition for said iteration scheme and mappings in the framework of Banach spaces. The results presented in this paper extend and improve the corresponding results of [2, 8, 9, 13, 14, 15, 18] and many others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

Convergence and Stability of Modified Random SP-Iteration for A Generalized Asymptotically Quasi-Nonexpansive Mappings

The purpose of this paper is to study the convergence and the almost sure T-stability of the modied SP-type random iterative algorithm in a separable Banach spaces. The Bochner in-tegrability of andom xed points of this kind of random operators, the convergence and the almost sure T-stability for this kind of generalized asymptotically quasi-nonexpansive random mappings are obtained. Our result...

متن کامل

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

Iterative methods for finding nearest common fixed points of a countable family of quasi-Lipschitzian mappings

We prove a strong convergence result for a sequence generated by Halpern's type iteration for approximating a common fixed point of a countable family of quasi-Lipschitzian mappings in a real Hilbert space. Consequently, we apply our results to the problem of finding a common fixed point of asymptotically nonexpansive mappings, an equilibrium problem, and a variational inequality problem for co...

متن کامل

Weak and strong convergence theorems for a finite family of generalized asymptotically quasinonexpansive nonself-mappings

In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.

متن کامل

A Hybrid Method for a Countable Family of Lipschitz Generalized Asymptotically Quasi-nonexpansive Mappings and an Equilibrium Problem

In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings and the solutions set of equilibrium problems. Some strong convergence theorems of the proposed iterative scheme are established by using the concept of W -mappings of a countable family of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014